### **Solar Energy Conversion**



### **Dye-Sensitized Solar Cell (DSSC)**



# **Cobalt Bipyridyl Redox Shuttles**



Ondersma and Hamann, J. Phys. Chem. C 2010, 114, (1), 638-645

#### Lifetimes



### **Recombination From Subbandgap States**



Ondersma and Hamann, J. Am. Chem. Soc. 2011, 133 (21), 9264-8271

### Variable Temp. Spectroelectrochemistry



 $\varepsilon = 1 \pm 0.3 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$  $\mathbf{E}_{\text{CB}} \approx -0.8 \text{ V vs Ag/AgCl}$ 

Ondersma and Hamann, Energy Environ. Sci. 2012, 5, 9476-9480

#### **Potential of new redox shuttles**



Ondersma and Hamann, Coord. Chem. Rev. 2012, DOI: 10.1016/j.ccr.2012.09.010

# **Designing a Better Dye Regenerator**



Chandrasekhar and McAuley, *Inorg. Chem.* 1992, 31, 480-487

#### **Current Open Questions**

•How do material physical properties affect recombination?

•How do we adapt the Marcus cross relation to understand details affecting regeneration?

Can we design better dye regenerators which aren't plauged from recombination losses?

 Ultimate goal is to develop general kinetic model to guide the design of new redox couple / semiconductor / sensitizer combinations which

# Hematite $(\alpha - Fe_2O_3)$





Kay, Cesar and Graetzel J. Am. Chem. Soc., 2006, 128 (49), 15714

### **Atomic Layer Deposition**

# ALD





0, 15, 45, 60 and 100 nm Fe<sub>2</sub>O<sub>3</sub>

Klahr, Martinson, and Hamann, Langmuir 2011, 27, 461

### **Limiting Thickness**





Klahr and Hamann, *J. Phys. Chem. C*, **2011**, 115 (16), 8393-8399 Klahr, Martinson, and Hamann, *Langmuir* **2011**, 27, 461

Dotan, Sivula, Gratzel, Rothschild, Warren Energy Environ. Sci., 2011, 4, 958-964

# H<sub>2</sub>O vs. [Fe(CN)<sub>6</sub>]<sup>3-/4-</sup>



Klahr, Gimenez, Fabregat-Santiago, Bisquert, and Hamann, Energy Environ. Sci., 2012, 5 (6), 7626-1636

### Conclusions



Klahr, Gimenez, Fabregat-Santiago, Bisquert, and Hamann, *Energy Environ. Sci.*, **2012**, *5* (6), 7626-1636 Klahr, Gimenez, Fabregat-Santiago, Hamann, and Bisquert, J. Am. Chem. Soc. **2012**, *134* (9), 4294–4302

#### **Potential Modulated Absorbance**



Wavelength / nm

de Oliveira, F. T., et. al. Science 2007, 315, 835.

[Fe<sup>v</sup>B\*(O)]<sup>-</sup>

### **JV Curves**



Klahr, Gimenez, Fabregat-Santiago, Bisquert, and Hamann, J. Am. Chem. Soc. 2012, 134 (40), 16693–16700

#### The Effect of Ti "Dopants"



Zandi, Klahr, and Hamann, Energy Environ. Sci., accepted

#### **Current Open Questions**

•What (chemically) are the surface states involved in water oxidation?

•How does the water oxidation mechanism / performance depend on metal oxide surface?

Can we make a heterojunction to more efficiently separate charge at the surface?

•How do these "dopants" affect the structure of hematite? How do we understand effect of "doping" in general ?

# **Thank You!**

**Grad Students:** Jesse Ondersma Ben Klahr **Kelley Hutchins** Yuling Xie **Omid Zandi Mandal Dhritabrata** 

**Postdocs:** Suraj Soman **Jason Thornton** 



**Collaborators: Juan Bisquert** Universitat Jaume I

**Alex Martinson** ANL

**New Students:** Josh Bailargeon Stephanie Castle Yuan Gao Dan Little













